Classical non-adiabatic angles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L325
(http://iopscience.iop.org/0305-4470/21/6/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 11:33

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Classical non-adiabatic angles

M V Berry and J H Hannay
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK

Received 18 December 1987

Abstract

If a family of tori in phase space is driven by a time-dependent Hamiltonian flow in such a way as to return after some time to the original family, there generally results a shift in the angle variables. One realisation of this process is in the cyclic adiabatic change of a classical Hamiltonian, and the angle change has previously been shown to separate naturally into a dynamical part and a geometrical part. Here the same geometrical angle change is extracted when the return is achieved non-adiabatically, and the 'dynamical' remainder calculated. Two examples are given: the precession of a spin and the rotation of phase-space ellipses.

It is known [1,2] that the cyclic adiabatic change of an integrable Hamiltonian induces in the angle variable(s) a change $\Delta \theta$ which separates naturally into the obvious dynamical change $\Delta \theta_{\mathrm{d}}$ (the time integral of the frequency), and an additional geometric change $\Delta \theta_{g}$. This is a classical analogue of the geometric quantum phase [3] arising naturally in the adiabatic cyclic change of a quantum Hamiltonian. As has recently been pointed out by Aharonov and Anandan [4], the same geometric part can be extracted from the phase change that occurs in a general, non-adiabatic, cyclic evolution of a quantum state, to leave a quite simple 'dynamical' remainder. Our purpose is to show that $\Delta \theta_{\mathrm{g}}$ can be similarly extracted from the general, non-adiabatic, cyclic change of an action torus, with a simple remainder.

For simplicity we analyse a system with one freedom and later generalise to more. Consider an action-angle coordinate system on the phase plane, i.e. $I(q, p ; X)$, $\theta(q, p ; X)$ where $X=\left(X_{1}, X_{2}, \ldots\right)$ is a set of parameters with which the coordinate system can be changed. The action contours are loops (one-dimensional tori) with area $2 \pi I$, and the angle is the canonically conjugate variable (whose uniform distribution is defined by the density $\delta(I-I(q, p ; X)))$.

The purpose of setting up this variable coordinate system is that we are now to imagine a flow in the phase space generated by a Hamiltonian $H(q, p, t)$ which causes an initial family of closed curves (tori), marked in the flow, to be carried through a cycle so as to return after time T (figure 1). At all times $0<t<T$ there is a parameter $X(t)$ for which the curves coincide with the action contours of $I(q, p ; X(t))$. This process defines a classical cyclic evolution; it is not necessary that H change slowly, or cyclically, or that the marked initial curves coincide with its contours.

Since by Liouville's theorem the area of a curve cannot change as it is transported, the action coordinate for any carried phase point is constant, $\dot{I}=0$, and the cyclic change means $X(T)=X(0)$. In contrast, the angle variable (of a carried phase point) will generally vary in this process, and, in particular, when an initial curve has returned after time T the individual points will be shifted by an angle (the same for all points on that curve) which we now determine.

Figure 1. Cyclically evolving tori at (a) $t=0,(b)$ $0<t<T$, (c) $t=T$, showing phase point on torus I shifting by angle $\Delta \theta$.

Following [1] we write the rate of change of angle of a phase point as the sum of contributions from its motion in phase space and from the changing coordinates I, θ :

$$
\begin{equation*}
\dot{\theta}=\partial \mathscr{H} / \partial I+\dot{X} \partial_{X} \theta \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{H}(\theta, I, t) \equiv H(q(\theta, I ; X(t)), p(\theta, I ; X(t)), t) \tag{2}
\end{equation*}
$$

and $\partial_{x} \theta$ is the rate at which the angle at fixed q, p changes with parameters. Integrating (1) we obtain $\Delta \theta$, which does not depend on θ, as a sum of two terms that individually do depend on θ. These dependences can be eliminated by averaging round each contour of constant action; we denote this averaging by

$$
\begin{equation*}
\langle\ldots\rangle \equiv \int \mathrm{d} q \int \mathrm{~d} p \delta(I-I(q, p ; X)) \ldots=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \theta \ldots . \tag{3}
\end{equation*}
$$

Thus we obtain

$$
\begin{equation*}
\Delta \theta=\Delta \theta_{\mathrm{d}}+\Delta \theta_{\mathrm{g}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \theta_{\mathrm{d}}=\int_{0}^{T} \mathrm{~d} t\langle\partial \mathscr{H} / \partial I\rangle \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \theta_{\mathrm{g}}=\oint \mathrm{d} X\left\langle\partial_{X} \theta\right\rangle=\oint\langle\mathrm{d} \theta\rangle \tag{6}
\end{equation*}
$$

where $\mathbf{d} \theta$ is the angle variable derivative 1 -form in parameter space.
By design, then, the angle shift has been divided into a geometric part $\Delta \theta_{\mathrm{g}}$-the same as that arising naturally in the adiabatic change of a Hamiltonian [1,2] and involving the parameter-space 1 -form $\mathbf{d} \theta$-and a remaining 'dynamical' part $\Delta \theta_{\mathrm{d}}$ involving not the instantaneous frequency as in the adiabatic case but its average $\langle\partial \mathscr{H} / \partial I\rangle$ round the action contour. Thus (4) is the classical analogue of Aharonov and Anandan's division [4] of a non-adiabatic quantum phase change into a geometric part occurring naturally in adiabatic change [3] and a remaining dynamical part.

Useful formulae for $\Delta \theta_{\mathrm{g}}$ will now be obtained by introducing the parameterdependent generating function of the canonical transformation from q, p to θ, I :

$$
\begin{equation*}
S(q, I ; X)=\int_{q_{0}}^{q} \mathrm{~d} q^{\prime} p\left(q^{\prime}, I ; X\right) \quad p=\partial S / \partial q \quad \theta=\partial S / \partial I . \tag{7}
\end{equation*}
$$

We note that this allows (1) to be reinterpreted [2] as a Hamilton equation in action-angle variables: the changing X introduces a time dependence which contributes to the transformed Hamiltonian a term $\partial S / \partial t$, whose I derivative can be shown to equal the extra term $\dot{X} \partial_{\chi} \theta$ in (1) (the proof proceeds by reducing both quantities to $S_{I X}-S_{I I} S_{X_{q}} / S_{I q}$).

Expressing S in action-angle variables by

$$
\begin{equation*}
\mathscr{S}(\theta, I ; X) \equiv S(q(\theta, I ; X), I ; X) \tag{8}
\end{equation*}
$$

we have $\mathrm{d} \mathscr{\mathscr { C }}=\mathrm{d} S+p \mathrm{~d} q$ and hence in (6)

$$
\begin{equation*}
\langle\mathbf{d} \theta\rangle=\langle\mathbf{d}(\partial S / \partial I)\rangle=\mathbf{d}\langle(\partial \mathscr{S} / \partial I)\rangle-\frac{\partial}{\partial I}\langle p \mathrm{~d} q\rangle=-\frac{\partial}{\partial I}\langle p \mathrm{~d} q\rangle \tag{9}
\end{equation*}
$$

where $\mathrm{d} q$ is the coordinate displacement of a torus point with fixed θ, I accompanying an infinitesimal parameter change. (The torus average $\langle\partial \mathscr{Y} / \partial I\rangle$ vanishes because $\partial \mathscr{Y} / \partial I$ is periodic in θ.)

Thus

$$
\begin{equation*}
\Delta \theta_{\mathrm{g}}=-\frac{\partial}{\partial I} \oint\langle p \mathrm{~d} q\rangle=-\frac{\partial}{\partial I}\langle\oint p \mathrm{~d} q\rangle \equiv-\frac{\partial}{\partial I}\langle A(\theta, I)\rangle \tag{10}
\end{equation*}
$$

where $A(\theta, I)$ is the phase-space area swept out during the circuit (i.e. over time T) by the point labelled θ on the torus I (figure 2). The torus average $\langle A(\theta, I)\rangle$ is independent of the X-dependent choice of origin of θ. An alternative expression is obtained by writing the first circuit integral in (10) as the flux, through the parameterspace circuit, of the 2 -form $-\partial(\langle\mathrm{d} p \wedge \mathrm{~d} q\rangle) / \partial I$ (cf [2]).

If the system has N freedoms, there are N actions $I=\left\{I_{1}\right\}, N$ angles $\theta=\left\{\theta_{t}\right\}$ and hence N angle shifts $\Delta \theta=\left\{\Delta \theta_{l}\right\}(1 \leqslant l \leqslant N)$. The l th dynamical and geometric shifts are given by (5) and (10) with ∂I replaced by $\partial I_{\text {I }}$ and $A(\theta, I)$ replaced by the symplectic area

$$
\begin{equation*}
A(\theta, I)=\sum_{l=1}^{N} \oint p_{l}(\theta, I ; X) \mathbf{d} q_{l}(\theta, I ; X) . \tag{11}
\end{equation*}
$$

Figure 2. Area $A(\theta, I)$ of loop traced out over $0 \leqslant t \leqslant T$ by phase point labelled θ on torus I.

The form (10) for the geometric angle implies a concise expression for the semiclassical quantum phase obeying the relation [2] $\Delta \theta_{g}=-\hbar \partial \gamma / \partial I$. This evidently yields

$$
\begin{equation*}
\gamma_{\mathrm{g}}=\langle\mathrm{A}(\theta, I)\rangle / \hbar \tag{12}
\end{equation*}
$$

a formula which could be rederived abinitio from the non-adiabatic quantum mechanics of Aharonov and Anandan [4] by using the semiclassical wavefunctions associated with moving tori (see, for example, [5]).

Our first example is the precession of a spin $J=J r$ (with unit direction r) according to the law

$$
\begin{equation*}
\dot{r}=\omega \wedge r . \tag{13}
\end{equation*}
$$

The phase space is a sphere of radius J, and the flow is a rigid rotation with instantaneous angular velocity ω. This is a Hamiltonian system whose canonical variables q, p are azimuthal polar angle relative to a fixed direction \hat{z} (coordinate) and J_{z} (momentum); the Hamiltonian is

$$
\begin{equation*}
H=\boldsymbol{\omega}(t) \cdot \boldsymbol{J}=J \boldsymbol{\omega}(t) \cdot \boldsymbol{r} . \tag{14}
\end{equation*}
$$

The action contours are chosen to be circles of colatitude α (imagined as painted on the sphere) with direction a (called polar) as axis (figure 3). We define the action I

Figure 3. Geometry and notation for torus I precessing about $\boldsymbol{\omega}(t)$.
as largest when $\alpha=0$, and therefore $1 / 2 \pi$ times the area of the antipolar spherical cap bounded by the contour, i.e.

$$
\begin{equation*}
I=J(1+\cos \alpha)=J(1+\boldsymbol{a} \cdot \boldsymbol{r}) . \tag{15}
\end{equation*}
$$

Let $\omega(t)$ be such as to take a on a closed circuit, thereby fulfilling the conditions of our general analysis. If in addition $\omega \cdot \boldsymbol{a}=$ constant $\equiv \omega \cos \chi$, then (13) can be shown to model the free motion of a spinning top (the sphere) whose axle a is forcibly cycled. (Two special cases are: $\boldsymbol{\omega}$ parallel to \boldsymbol{a} and changed slowly (adiabatic); and $\boldsymbol{\omega}=$ constant (simple precession).)

From (5) the dynamical angle shift is

$$
\begin{array}{r}
\Delta \theta_{\mathrm{d}}=J \frac{\partial}{\partial I} \int_{0}^{T} \mathrm{~d} t\langle\boldsymbol{\omega} \cdot \boldsymbol{r}\rangle=J \frac{\partial}{\partial I} \int_{0}^{T} \mathrm{~d} t \boldsymbol{\omega} \cdot \boldsymbol{a} \boldsymbol{r} \cdot \boldsymbol{a} \\
=\omega T \frac{\partial}{\partial I}(I-J) \cos \chi=\omega T \cos \chi . \tag{16}
\end{array}
$$

The geometric angle shift is the solid angle Ω swept out by the axis \boldsymbol{a}. This was anticipated by a physical argument [1] and derived elsewhere [6, 7]. Here we obtain it from the formula (10) with the area $\boldsymbol{A}(\theta, I)$ built up from individually torus-averaged elements, that is

$$
\begin{equation*}
\Delta \theta_{\mathrm{g}}=-\iint \frac{\partial}{\partial I}\langle\mathrm{~d} A\rangle \tag{17}
\end{equation*}
$$

For $\mathrm{d} \boldsymbol{A}$ it is sufficient to consider the triangle $\boldsymbol{r}, \boldsymbol{r}+\boldsymbol{b} \wedge \boldsymbol{r} \mathrm{d} \theta_{b}, \boldsymbol{r}+\boldsymbol{c} \wedge \boldsymbol{r} \mathrm{d} \theta_{c}$, where $\boldsymbol{b} \mathrm{d} \theta_{b}$ and $c \mathrm{~d} \theta_{c}$ are two infinitesimal rigid rotations of a painted action circle. The torusaveraged area (J times solid angle) of the triangle (correctly signed) is

$$
\begin{array}{rl}
\langle\mathrm{d} A\rangle=\frac{J}{2} \mathrm{~d} \theta_{b} & \mathrm{~d} \theta_{c} \int_{\text {sphere }} \mathrm{d}^{2} r(\boldsymbol{b} \wedge \boldsymbol{r}) \wedge(\boldsymbol{c} \wedge \boldsymbol{r}) \cdot(-\boldsymbol{r}) \delta(\boldsymbol{a} \cdot \boldsymbol{r}+1-I / J) / 2 \pi \\
& =-\frac{J}{2} \mathrm{~d} \theta_{b} \mathrm{~d} \theta_{c} \int \mathrm{~d}^{2} r(\boldsymbol{b} \wedge \boldsymbol{c}) \cdot \boldsymbol{r} \delta(\boldsymbol{a} \cdot \boldsymbol{r}+1-I / J) / 2 \pi \\
& =-\frac{1}{2} \mathrm{~d} \theta_{b} \mathrm{~d} \theta_{c}[-\boldsymbol{a} \cdot(\boldsymbol{b} \wedge \boldsymbol{c})(I-J)] \\
& =-\frac{1}{2} \mathrm{~d} \theta_{b} \mathrm{~d} \theta_{c}(\boldsymbol{b} \wedge \boldsymbol{a}) \wedge(\boldsymbol{c} \wedge \boldsymbol{a}) \cdot \boldsymbol{a}(I-J) \tag{18}
\end{array}
$$

Thus $-\partial\langle\mathrm{d} A\rangle / \partial I=\mathrm{d} \Omega$ and $\Delta \theta_{g}=\Omega$, as claimed.
For simple precession ($\omega=$ constant $\equiv \omega \hat{z}$), $T=2 \pi / \omega$ gives a cyclic evolution and $\Omega=2 \pi(1-\cos \chi)$, so $\Delta \theta=2 \pi$, reflecting the fact that the tori have been rigidly rotated about ω, leaving points in their original positions. The quantum version of this particular case is a slight generalisation of one considered by Aharonov and Anandan [4]. We have $J=\hbar[j(j+1)]^{1 / 2}(2 j$ integer) and, for an arbitrary initial state, the following evolution generated by (14):

$$
\begin{equation*}
|\psi(t)\rangle=\sum_{m=-j}^{j} a_{m} \exp (-\mathrm{i} m \omega t)|m\rangle \tag{19}
\end{equation*}
$$

where $|m\rangle$ is the eigenstate with $\langle m| J_{z}|m\rangle=m \hbar$. This is also cyclic for $T=2 \pi / \omega$, with total phase shift $\gamma=2 \pi j$ (up to 2π), and hence a geometric phase γ_{g} given in terms
of the dynamical phase γ_{d} by

$$
\begin{align*}
\gamma_{\mathrm{g}}=2 \pi j-\gamma_{\mathrm{d}} & =2 \pi j+\frac{1}{\hbar} \int_{0}^{2 \pi / \Omega} \mathrm{d} t\langle\psi| H|\psi\rangle \\
& =2 \pi\left(j+\sum_{m=-j}^{j} m\left|a_{m}\right|^{2}\right)=2 \pi\left(j+\langle\psi| J_{z}|\psi\rangle / \hbar\right) \tag{20}
\end{align*}
$$

Corresponding to the torus I is an eigenstate of the component of J along a, with eigenvalue $I-j \hbar(=$ integer $\times \hbar / 2)$, so that the expectation value in (20) is $(I=j \hbar) \cos \chi$. Thus

$$
\begin{equation*}
\gamma_{\mathrm{g}}=2 \pi[j+(I / \hbar-j) \cos \chi] \rightarrow 2 \pi[J+(I-J) \cos \chi] / \hbar \text { as } j \rightarrow \infty . \tag{21}
\end{equation*}
$$

It can be shown that $2 \pi[J+(I-J) \cos \chi]$ is the torus average of the signed areas swept out by θ points during the cycle, i.e. $\langle A(\theta, I)\rangle$ in (10), so that the semiclassical relation (12) is confirmed.

In our second example the tori are rotating ellipses in phase space. The initial tori, with area $2 \pi I$, can be written

$$
\begin{equation*}
I=\left(a q^{2}+2 b q p+c p^{2}\right) / 2\left(a c-b^{2}\right)^{1 / 2} \tag{22}
\end{equation*}
$$

with a, b, c constant and satisfying $a c>b^{2}$. The Hamiltonian

$$
\begin{equation*}
H=\omega\left(p^{2}+q^{2}\right) / 2 \tag{23}
\end{equation*}
$$

makes them rotate rigidly and non-adiabatically in $T=2 \pi / \omega$.
We find $\Delta \theta_{g}$ and $\Delta \theta_{\mathrm{d}}$ by attaching values of θ to points moving rigidly with the tori (i.e. in circles). The transformation (7) gives, with (22),

$$
\begin{align*}
& q=(2 I c)^{1 / 2}\left(a c-b^{2}\right)^{-1 / 4} \cos \theta \\
& p=(2 I / c)^{1 / 2}\left[-b(a c-b)^{-1 / 4} \cos \theta+\left(a c-b^{2}\right)^{1 / 4} \sin \theta\right] \tag{24}
\end{align*}
$$

whence averaging over θ gives

$$
\begin{equation*}
\langle\partial \mathscr{H} / \partial I\rangle=\frac{\omega}{2} \frac{\partial}{\partial I}\left\langle p^{2}+q^{2}\right\rangle=\frac{\omega(a+c)}{2\left(a c-b^{2}\right)^{1 / 2}} \tag{25}
\end{equation*}
$$

Thus the dynamical angle shift (5) is

$$
\begin{equation*}
\Delta \theta_{\mathrm{d}}=\pi(a+c) /\left(a c-b^{2}\right)^{1 / 2} \tag{26}
\end{equation*}
$$

The geometrical shift (10) involves the areas $A(\theta, I)$ (figure 2), in this case circles whose torus average is

$$
\begin{equation*}
\langle\mathbf{A}(\theta, I)\rangle=\pi\left\langle p^{2}+q^{2}\right\rangle=\pi(a+c) I /\left(a c-b^{2}\right)^{1 / 2} \tag{27}
\end{equation*}
$$

so that

$$
\begin{equation*}
\Delta \theta_{\mathrm{g}}=-\pi(a+c) /\left(a c-b^{2}\right)^{1 / 2} . \tag{28}
\end{equation*}
$$

Note first that $\Delta \theta_{\mathrm{g}}$ is of course the same as that calculated elsewhere [1] for an adiabatic rotation (and shown to be equal to $-\pi\left(\alpha+\alpha^{-1}\right)$ where α is the axis ratio of the ellipses) and second that $\Delta \theta_{\mathrm{d}}$ and $\Delta \theta_{\mathrm{g}}$ cancel exactly for this rigid rotation which, as with simple precession, leaves phase points back where they started.

Note added in proof. Anandan [8] has a similar argument to ours.

References

[1] Hannay J H 1985 J. Phys. A: Math. Gen. 18 221-30
[2] Berry M V 1985 J. Phys. A: Math. Gen. 18 15-27
[3] Berry M V 1984 Proc. R. Soc. A 392 45-57
[4] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593-6
[5] Berry M V and Balazs N L 1979 J. Phys. A: Math. Gen. 12 625-42
[6] Berry M V 1986 Fundamental Aspects of Quantum Theory (NATO ASI Series 144) ed V Gorini and A Frigerio (New York: Plenum) pp 267-78
[7] Cina J 1986 Chem. Phys. Lett. 132 393-5
[8] Anandan J 1988 Phys. Lett. B in press

