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Classical non-adiabatic angles 

M V Berry and J H Hannay 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, U K  

Received 18 December 1987 

Abstract. I f  a family of tori in phase space is driven by a time-dependent Hamiltonian 
flow in such a way as to return after some time to the original family, there generally results 
a shift in the angle variables. One realisation of this process is in the cyclic adiabatic 
change of a classical Hamiltonian, and the angle change has previously been shown to 
separate naturally into a dynamical part and a geometrical part. Here the same geometrical 
angle change is extracted when the return is achieved non-adiabatically, and the ‘dynamical’ 
remainder calculated. Two examples are given: the precession of a spin and the rotation 
of phase-space ellipses. 

I t  is known [ 1,2] that the cyclic adiabatic change of an integrable Hamiltonian induces 
in the angle variable(s) a change A 6  which separates naturally into the obvious 
dynamical change A e d  (the time integral of the frequency), and an additional geometric 
change A e g .  This is a classical analogue of the geometric quantum phase [3] arising 
naturally in the adiabatic cyclic change of a quantum Hamiltonian. As has recently 
been pointed out by Aharonov and Anandan [4], the same geometric part can be 
extracted from the phase change that occurs in a general, non-adiabatic, cyclic evolution 
of a quantum state, to leave a quite simple ‘dynamical’ remainder. Our purpose is to 
show that Aeg  can be similarly extracted from the general, non-adiabatic, cyclic change 
of an action torus, with a simple remainder. 

For simplicity we analyse a system with one freedom and later generalise to more. 
Consider an action-angle coordinate system on the phase plane, i.e. I ( q ,  p ;  X ) ,  
6(q, p ;  X )  where X = ( X ,  , X , ,  . . .) is a set of parameters with which the coordinate 
system can be changed. The action contours are loops (one-dimensional tori) with 
area 27rZ, and the angle is the canonically conjugate variable (whose uniform distribu- 
tion is defined by the density S (  I - I ( q ,  p ;  X ) ) ) .  

The purpose of setting up this variable coordinate system is that we are now to 
imagine a flow in the phase space generated by a Hamiltonian H ( q ,  p ,  t )  which causes 
an initial family of closed curves (tori), marked in the flow, to be carried through a 
cycle so as to return after time T (figure 1). At all times 0 < t < T there is a parameter 
X ( t )  for which the curves coincide with the action contours of Z(q, p ;  X ( t ) ) .  This 
process defines a classical cyclic evolution; it is not necessary that H change slowly, 
or cyclically, or that the marked initial curves coincide with its contours. 

Since by Liouville’s theorem the area of a curve cannot change as it is transported, 
the action coordinate for any carried phase point is constant, Z = 0, and the cyclic 
change means X (  T )  = X ( 0 ) .  In contrast, the angle variable (of a carried phase point) 
will generally vary in this process, and, in particular, when an initial curve has returned 
after time T the individual points will be shifted by an angle (the same for all points 
on that curve) which we now determine. 
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0 < t < T, ( c )  t = T, showing phase point on torus I 
4 shifting by angle At). 

Following [ l ]  we write the rate of change of angle of a phase point as the sum of 
contributions from its motion in phase space and from the changing coordinates I ,  8: 

where 

w e ,  I ,  t )  = w q w ,  I ;  w)), P ( ~ , I ;  wm, o ( 2 )  

and axe is the rate at which the angle at fixed q, p changes with parameters. Integrating 
( 1 )  we obtain AB, which does not depend on 8, as a sum of two terms that individually 
do depend on 0. These dependences can be eliminated by averaging round each 
contour of constant action; we denote this averaging by 

(. . .)=I dq I d p a ( I - I ( q , p ;  X ) )  . . . =Ljo2r 2 7  d e . .  . (3) 

Thus we obtain 

where 
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and 

A8,= dX(ax8)= (de)  f f  
where d e  is the angle variable derivative 1-form in parameter space. 

By design, then, the angle shift has been divided into a geometric part A+the 
same as that arising naturally in the adiabatic change of a Hamiltonian [l,  21 and 
involving the parameter-space 1-form d 8-and a remaining 'dynamical' part AOd- 
involving not the instantaneous frequency as in the adiabatic case but its average 
(aX/aI) round the action contour. Thus (4) is the classical analogue of Aharonov and 
Anandan's division [4] of a non-adiabatic quantum phase change into a geometric 
part occurring naturally in adiabatic change [3] and a remaining dynamical part. 

Useful formulae for AOg will now be obtained by introducing the parameter- 
dependent generating function of the canonical transformation from q, p to 8, I :  

S(q, I ;  X )  = 1' dq'p(q' ,  I ;  X)  p = as/aq e=as/aI. (7)  
90 

We note that this allows (1) to be reinterpreted [2] as a Hamilton equation in 
action-angle variables: the changing X introduces a time dependence which contributes 
to the transformed Hamiltonian a term aS/ar, whose I derivative can be shown to 
equal the extra term X d x 8  in (1) (the proof proceeds by reducing both quantities to 
S I X  - SIISX,/SI,). 

Expressing S in action-angle variables by 

u(e, I ;  x) = s(q(e, I ;  XI, I ;  x) (8) 

we have d Y = d S + p d q  and hence in ( 6 )  

( 9 )  

where dq is the coordinate displacement of a torus point with fixed 8, I accompanying 
an infinitesimal parameter change. (The torus average (au/aI) vanishes because au/aI 
is periodic in 8.) 

a a 
(de)  = (d(aS/aI))  = d((au/aZ)) --(pdq) = --(pdq) ar a 1  

Thus 

where A(@, I )  is the phase-space area swept out during the circuit (i.e. over time T )  
by the point labelled 8 on the torus I (figure 2). The torus average (A(8 ,  I ) )  is 
independent of the X-dependent choice of origin of 8. An alternative expression is 
obtained by writing the first circuit integral in (10) as the flux, through the parameter- 
space circuit, of the 2-form -d((dp A dq)) /aI  (cf [2]). 

If the system has N freedoms, there are N actions I = { I / } ,  N angles 8 = (8,) and 
hence N angle shifts A 8  = {A@/} (1 S 1 G N ) .  The Zth dynamical and geometric shifts 
are given by ( 5 )  and (10) with 3 1  replaced by and A( 8, I )  replaced by the symplectic 
area 
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Figure 2. Area A( 8, I ) of loop traced out over 0 G t 5 7 by phase point labelled 8 on 
torus I .  

The form (10) for the geometric angle implies a concise expression for the semi- 
classical quantum phase obeying the relation [2] AB, = - f iay/aZ. This evidently yields 

r,=(Aw, m i h  (12) 

a formula which could be rederived ab initio from the non-adiabatic quantum mechanics 
of Aharonov and Anandan [4] by using the semiclassical wavefunctions associated 
with moving tori (see, for example, [ 5 ] ) .  

Our first example is the precession ofa spin J = Jr (with unit direction r )  according 
to the law 

i = w r \ r .  (13) 
The phase space is a sphere of radius J, and the flow is a rigid rotation with instantaneous 
angular velocity w. This is a Hamiltonian system whose canonical variables q , p  are 
azimuthal polar angle relative to a fixed direction 2 (coordinate) and J,  (momentum); 
the Hamiltonian is 

H = w ( t ) J = Jw ( t ) r. (14) 
The action contours are chosen to be circles of colatitude (Y (imagined as painted on 
the sphere) with direction a (called polar) as axis (figure 3). We define the action J 

\ 
Figure 3. Geometry and notation for torus I precessing about o( I ) .  
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as largest when a =0,  and therefore 1/27r times the area of the antipolar spherical 
cap bounded by the contour, i.e. 

( 1 5 )  

Let w (  t )  be such as to take a on a closed circuit, thereby fulfilling the conditions 
of our general analysis. If  in addition w - a = c o n s t a n t = ~  cosx, then (13) can be 
shown to model the free motion of a spinning top (the sphere) whose axle a is forcibly 
cycled. (Two special cases are: w parallel to a and changed slowly (adiabatic); and 
w = constant (simple precession).) 

I = J(l +cos a )  = J(1 + a  - r ) .  

From ( 5 )  the dynamical angle shift is 

(16) 

The geometric angle shift is the solid angle ll swept out by the axis a. This was 
anticipated by a physical argument [ l ]  and derived elsewhere [6,7]. Here we obtain 
it  from the formula (10) with the area A( 8, I )  built up from individually torus-averaged 
elements, that is 

a 
a I  

= U T - (  I - J )  COS x = W T  COS X. 

AB,= -jl z ( d A ) .  a 

For dA it is sufficient to consider the triangle r, r + 6 A r dob, r +  c A r de,, where b d &  
and c do, are two infinitesimal rigid rotations of a painted action circle. The torus- 
averaged area ( J  times solid angle) of the triangle (correctly signed) is 

(dA)=;dO, de, 1 d2r(6 A r )  A ( c  A r )  ( - r ) a ( a  r +  1 - I / J ) / 2 a  
sphere 

= -!deb do, 

= -+ d 0, d 8, [ - a - ( b A c ) ( I - J )I 
= -; d 8 b  d 8, ( b  A a )  A ( c A a )  U ( I  - J ) .  

d2r(b A c )  r s ( a .  r +  1 - Z/J)/27r 
2 I 

(18) 

Thus -d(dA)/aI = d n  and AO,=SZ, as claimed. 
For simple precession ( w  = constant = U?),  T = 27r/w gives a cyclic evolution and 

Cl = 2 a (  1 -cos x), so AB = 2 ~ ,  reflecting the fact that the tori have been rigidly rotated 
about w, leaving points in their original positions. The quantum version of this 
particular case is a slight generalisation of one considered by Aharonov and Anandan 
[ 4 ] .  We have J =  h [ j ( j + l ) ] ” *  (2j integer) and, for an arbitrary initial state, the 
following evolution generated by (14): 

where Im) is the eigenstate with (mlJ,Im)= mh. This is also cyclic for T = 2 7 r / w ,  with 
total phase shift y’2n-j (up to 2a), and hence a geometric phase ys  given in terms 
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of the dynamical phase Yd by 

yg = 2 r j  - yd = 2 r j  + - 

Corresponding to the torus I is an eigenstate of the component of J along a, with 
eigenvalue I - j f i  (=  integer x f i / 2 ) ,  so that the expectation value in ( 2 0 )  is ( I  = j f i )  cos x. 
Thus 

yg = 2 4 j +  ( I / f i  - j )  cos X I +  2 4 J - t  ( I  - J )  cos x ] / h  as j +  00. ( 2 1 )  

It can be shown that 2 r [ J  + ( I  - J )  cos x ]  is the torus average of the signed areas 
swept out by 6 points during the cycle, i.e. (A(& I ) )  in (lo),  so that the semiclassical 
relation ( 1 2 )  is confirmed. 

In our second example the tori are rotating ellipses in phase space. The initial tori, 
with area 27~1,  can be written 

I = ( a q 2 + 2 b q p +  c p 2 ) / 2 ( a c -  b2) ’ l2  

H = w (  p 2 +  q 2 ) / 2  

( 2 2 )  

with a, b, c constant and satisfying ac>  b2 .  The Hamiltonian 

( 2 3 )  

makes them rotate rigidly and non-adiabatically in T = 2 r / w .  

tori (i.e. in circles). The transformation ( 7 )  gives, with ( 2 2 ) ,  
We find AOg and AOd by attaching values of 6 to points moving rigidly with the 

= ( ~ I c ) ’ / ~ ( ~ c -  b2)-1 /4  COS e 
( 2 4 )  

p =  ( 2 I / ~ ) ” ~ [ - b ( a c - b ) - ~ ~ ~ c o s  8 + ( a ~ - b ~ ) ~ ’ ~ s i n  e] 
whence averaging over e gives 

w a  w ( a  + c) (a%?/ar)=- - ( p 2 + q 2 ) =  
2 ar 2 ( ~ -  b 2 ) ’ / * ’  

Thus the dynamical angle shift (5) is 

h o d =  T (  U + C ) / ( a C -  b’)”’. ( 2 6 )  

The geometrical shift ( 1 0 )  involves the areas A(0, I )  (figure 2 ) ,  in this case circles 
whose torus average is 

(A(  0, I ) )  = r ( p 2 +  q 2 )  = T ( U  + c)l/(ac - b2)”’ 

A@,= - ~ ( a  + c)/( ac - b2)”2 .  

( 2 7 )  

so that 

( 2 8 )  

Note first that A@, is of course the same as that calculated elsewhere [ 1 3  for an adiabatic 
rotation (and shown to be equal to -r(a +a-’ )  where a is the axis ratio of the ellipses) 
and second that hed and AOg cancel exactly for this rigid rotation which, as with simple 
precession, leaves phase points back where they started. 
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Note added in prooj Anandan [SI  has a similar argument to ours. 
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